

Motion and Forces in Electric and Magnetic Fields: Set 15					
Set	Problem	Solution			
15	1a 1b 1c 1d	The proton accelerates in a straight line (parallel to the field lines). The proton continues at a constant velocity. The proton curves in a parabolic arc. The proton curves in an arc of a circle. The magnetic field must be oriented from north to south (see diagram).			
		+			
	3a	$F_{B} = F_{E}$ $vqB = Eq$ $E = vB$ $= (4.5 \times 10^{6})(24.5 \times 10^{23})$ $= 1.10 \times 10^{5} \text{ V m}^{-1}$			
	3b	Yes. The charges cancel.			
	4a	The electrons are forced to follow a curved path (an arc of a circle).			
	4b	No effect – the magnetic field only exerts a force on charges moving across the field lines.			
	4c	The electrons are decelerated (accelerated in the direction opposite to their motion). F = Eq ma = Eq			
		$a = \frac{Eq}{m}$ = $\frac{(1.00 \times 10^{3})(1.6 \times 10^{-19})}{9.11 \times 10^{-31}}$ = $1.76 \times 10^{14} \text{ m s}^{-2}$ Hence, they accelerate in a straight line at $1.76 \times 10^{14} \text{ m s}^{-2}$			
	5a	$E_{k} = 15 \times 10^{3} \text{ eV} = 2.4 \times 10^{-15} \text{ J}$ $E_{k} = \frac{1}{2} \text{ mv}^{2}$ $v = \sqrt{\frac{2E_{k}}{m}}$ $= \sqrt{\frac{2(2.4 \times 10^{-15})}{9.11 \times 10^{-31}}}$ $= 7.26 \times 10^{7} \text{ m s}^{-1}$			
	5b	$F_{B} = F_{c}$ $vqB = \frac{mv^{2}}{r}$ $qB = \frac{mv}{r}$ $r = \frac{mv}{qB}$ $= \frac{(9.11 \times 10^{-31})(7.26 \times 10^{7})}{(1.6 \times 10^{-19})(2.35)}$ $= 1.76 \times 10^{-4} m$			

.

Motion and Forces in Electric and Magnetic Fields: Set 15					
Set	Problem	Solution			
15	5c	$v = \frac{2\pi r}{T}$ $T = \frac{2\pi r}{v}$ $2\pi (1.76 \times 10^{-4})$			
		$= \frac{1.52 \times 10^{7}}{7.26 \times 10^{7}}$			
	6a	$F_{B} = F_{c}$ $vqB = \frac{mv^{2}}{r}$ $qB = \frac{mv}{r}$ $v = \frac{qBr}{m}$			
		$= \frac{(1.6 \times 10^{-19})(1.50)(50 \times 10^{-3})}{1.67 \times 10^{-27}}$ = 7.19×10 ⁶ m s ⁻¹			
	6b	$v = \frac{2\pi r}{T}$ $T = \frac{2\pi r}{v}$ $= \frac{2\pi (50 \times 10^{-3})}{7.19 \times 10^{6}}$ $= 4.37 \times 10^{-8} s$ $f = \frac{1}{T}$ $= \frac{1}{4.37 \times 10^{-8}}$ $= 2.29 \times 10^{7} Hz$ Hence period is 4.37 × 10 ⁻⁸ s and frequency is 2.29 × 10 ⁷ Hz.			
	6с	$E_{k} = \frac{1}{2} \text{mv}^{2}$ $= \frac{1}{2} (1.67 \times 10^{-27}) (7.19 \times 10^{6})^{2}$ $= 4.317 \times 10^{-14} \text{ J}$ $= \frac{4.317 \times 10^{-14}}{1.6 \times 10^{-19}} \text{ eV}$ $= 2.698 \times 10^{5} \text{ eV}$ The required voltage is thus 2.70 kV			
	7a	 (i) Electric field: deflection is along the field lines; Magnetic field: deflection is at right angles to the field lines (ii) Electric field: changes the particle speed Magnetic field: does not change the particle speed 			
	7Ь	X X X X X X X X X X X X X X X X Magnetic field into Herein Herein			
		page			

Motion and Forces in Electric and Magnetic Fields: Set 15						
Set	Problem	Solution				
15	7b (cont-)	This arrangement will allow a negatively charged particle, such as an electron, to pass undeflected so long as its direction of travel is from the bottom of the page to the top, and its speed is the appropriate value.				
	7c	$qvB = Eq$ $vB = E$ $v = \frac{E}{B}$ $= \frac{10^{4}}{0.1}$ $= 1.00 \times 10^{5} \text{ m s}^{-1}$				
	8a	proton energy = 20 keV = 20×10 ³ ×1.6×10 ⁻¹⁹ J = 3.2×10 ⁻¹⁵ J $E_k = \frac{1}{2} mv^2$ $v = \sqrt{\frac{2E_k}{m}}$ $= \sqrt{\frac{2(3.2×10^{-15})}{1.67×10^{-27}}}$ $v = 1.96×10^6 m s^{-1}$ vqB = F = ma $a = \frac{vqB}{m}$ $= \frac{(1.96×10^6)(1.6×10^{-19})(0.200)}{1.67×10^{-27}} m s^{-2}$ $= 3.75×10^{13} m s^{-2}$ at right angles to the field				
	8b	The force changes the path of the proton, but always remains the same magnitude and always acts at right angles to the proton's path. This is characteristic of a centripetal force. qvB = Eq E = vB $= (1.96 \times 10^6)(0.200)$ $= 3.92 \times 10^5 \text{ N C}^{-1}$				
	9a	$F_{B} = F_{c}$ $qvB = \frac{mv^{2}}{r}$ $qB = \frac{mv}{r}$ $r = \frac{mv}{qB}$ $= \frac{(9.11 \times 10^{-31})(1.6 \times 10^{4})}{(1.6 \times 10^{-19})(0.0300)}$ $= 3.04 \times 10^{-6} m$				

 $= 5.75 \times 10^7 \text{ m s}^{-1} \text{ at } \text{Q}$